
王金良,男,汉族,黑龙江鸡西人。1981年1月出生,2007年12月加入中国共产党,2011年12月参加工作,博士学位,三级教授,博士生导师,黑龙江大学博学学者讲座教授。黑龙江省杰出青年基金获得者,黑龙江省复杂系统理论与计算重点实验室主任,数学生态学二级学科博士点负责人,黑龙江大学交叉学科培育学科(生物数学)负责人,黑龙江省数学会常务理事,中国数学会生物数学专业委员会第九届委员会常务委员。
2001年9月至2005年7月就读于哈尔滨师范大学数学与应用数学专业,获理学学士学位,2005年9月至2008年7月就读于黑龙江大学基础数学专业,获理学硕士学位:2008年9月至2011年9月就读于哈尔滨工业大学基础数学专业,获理学博士学位。2021年12月至今任黑龙江大学数学科学学院副院长,负责研究生培养与科研等工作。————————————————————————————————————————————
一、教育经历
2001.09—2005.07 哈尔滨师范大学数学与应用数学专业,理学学士;
2005.09—2008.07 黑龙江大学基础数学专业,理学硕士,导师:曹重光教授;
2008.09—2011.09 哈尔滨工业大学基础数学专业,理学博士,导师:刘胜强教授;
2009.10—2010.09 日本静冈大学创造科学技术大学院,合作导师:竹内康博教授;
2013.04—2015.11 西南大学数学博士后科研流动站, 合作导师:刘贤宁教授;
2014.09—2015.08 加拿大西安大略大学,访问学者,合作导师:邹幸福教授;————————————————————————————————————————————
二、工作经历
2011.12—2014.08 黑龙江大学数学科学学院,讲师;
2014.09—2017.08 黑龙江大学数学科学学院,副教授;
2017.09—至今 黑龙江大学数学科学学院,教授;————————————————————————————————————————————
三、学术兼职
● 黑龙江省复杂系统理论与计算重点实验室主任;
● 中国数学会生物数学专业委员会第九届委员会常务委员;
● 黑龙江省数学会常务理事;————————————————————————————————————————————
四、研究方向
生物数学:传染病时空动力学建模与研究;
————————————————————————————————————————————
五、科研获奖
● 2015 年获得黑龙江省科学技术奖三等奖1 项;
● 2021年黑龙江省高校科学技术奖一等奖1项;
————————————————————————————————————————————
六、教学项目与获奖
● 2024年度黑龙江省研究生课程思政建设项目课程思政案例《数学生物学》。
● 2024年度黑龙江省高等教育教学改革研究(研究生教育)一般项目,《数学生物学》研究生课程体系优化与改革研究,SJGYY2024147。
● 2024年黑龙江省首届高等教育(研究生)教学成果奖二等奖,“思政引领,产教融合,实践育人”:数学和统计学研究生创新能力培养与实践。
● 黑龙江大学2024年度研究生精品课程建设项目,《数学生物学》。
————————————————————————————————————————————
七、科研项目
● 反应扩散年龄结构传染病模型的时空动力学分析,国家自然科学基金面上项目,项目号12471460,2025/01-2028/12,45万,主持;
● 基于个体和空间属性的传染病时空动力学建模与研究,黑龙江省自然科学基金杰出青年基金项目,项目号JQ2023A005,2023/07-2026/12,50万,主持;
● 基于年龄结构和空间扩散的传染病时空动力学建模与研究,国家自然科学基金面上项目,项目号12071115,2021/01-2024/12,50万,主持;
● 年龄结构的传染病模型的全局性态研究,国家自然科学基金青年项目,项目号11401182,2015/01-2017/12,22万,主持;
● 空间异质流行病模型的 Lyapunov 稳定性研究,国家自然科学基金天元项目,项目号11226255,2013/01-2013/12,3万,主持;
● 具有年龄结构的传染病模型的稳定性研究,中国博士后科学基金面上资助(第 55 批),项目号2014M552295,2014/09-2015/11,5万,主持;
● 多族群传染病模型的Lyapunov函数构造及稳定性分析,黑龙江省自然科学基金面上项目,项目号A201415,2014/07-2016/05,3万,主持;
● 基于年龄结构和空间扩散的传染病动力学建模与分析,黑龙江省自然科学基金留学归国人员科学基金,项目号LC2018002,2018/07-2021/09,5万,主持;
● 流动人口对新兴传染病防控影响的数学建模与研究,国家自然科学基金面上项目(合作),项目号11471089,2015/01-2018/12,10万,排名第二;
● 异质群组中疾病传播的若干动力学问题研究,国家自然科学基金面上项目(合作),项目号11871179,2019/01-2022/12,6万,排名第二;
————————————————————————————————————————————
八、学术论文
---2024---
[1] Jiaxing Liu, JinliangWang, Analysis of a vector-borne disease model with vector-bias mechanism in advective heterogeneous environment, Advances in Nonlinear Analysis 2024; 13: 20240045.
[2] Guoyang Lyu, Jinliang Wang, Ran Zhang, Threshold dynamics of a diffusive HIV infection model with infection-age, latency and cell–cell transmission, Communications in Nonlinear Science and Numerical Simulation, 138 (2024) 108248.
[3] Yuwei Feng, JinliangWang, Classification of spatial dynamics of a vector–host epidemic model in advective heterogeneous environment, Studies in Applied Mathematics, 2024;153:e12744.
[4] Jinliang Wang, Guoyang Lyu, Analysis of an age-space structured tuberculosis model with treatment and relapse, Studies in Applied Mathematics, 2024;153:e12700.
[5] Wenjing Wu, Shengqiang Liu, Jinliang Wang, A note on the global attractivity for a ZIKV epidemic model with spatial structure and general incidence rate, Discrete and Continuous Dynamical Systems - B, 2024, 29(6): 2471-2479.
[6] Lidong Zhang, Jinliang Wang, Ran Zhang, Mathematical analysis for an age-space structured HIV model with latency, Mathematics and Computers in Simulation 220 (2024) 595–617.
[7] Jinliang Wang, Wenjing Wu, Yuming Chen, Analysis of a diffusive two-strain malaria model with the carrying capacity of the environment for mosquitoes, Infectious Disease Modelling 9 (2024) 931-962.
[8] Jinliang Wang, Hao Qu, Desheng Ji, Analysis of a reaction-diffusion dengue model with vector bias on a growing domain, Applicable Analysis, 103(11), 2024, 2047-2068.
[9] Guoyang Lyu, Yutong Guo, Jinliang Wang, Global threshold analysis of an age-space structured disease model with relapse, Nonlinear Analysis-Modelling and Control, 29(5), 2024, 914-938. ————————————————————————————————————————————
---2023---
[1]Jinliang Wang,Xiaoqing Wu, Dynamics and Profiles of a Diffusive Cholera Model with Bacterial Hyperinfectivity and Distinct Dispersal Rates, Journal of Dynamics and Differential Equations, 35 (2023) 1205-1241.
[2]Jinliang Wang,Ran Zhang,Yue Gao, Global Threshold Dynamics of an Infection Age-Space Structured HIV Infection Model with Neumann Boundary Condition, Journal of Dynamics and Differential Equations, 35 (2023) 2279-2311.
[3]Jinliang Wang, Wenjing Wu,Chunyang Li, Dynamical analysis of a reaction-diffusion mosquito-borne model in a spatially heterogeneous environment, Advances in Nonlinear Analysis 2023; 12: 20220295
[4]Jinliang Wang, Wenjing Wu, Toshikazu Kuniya, Global threshold analysis on a diffusive host-pathogen model with hyperinfectivity and nonlinear incidence functions, Mathematics and Computers in Simulation 203 (2023) 767-802.
[5]Han Lu,Jinliang Wang, Analysis of a diffusive host-pathogen epidemic model with two-stage mechanism in a spatially heterogeneous environment. Mathematical Methods in the Applied Sciences, 46(13) 2023, 14657-14688.
[6]Jiangxue Xu,Jinliang Wang, Threshold-type result for a nonlocal diffusive cholera model with seasonally forced intrinsic incubation period, Discrete and Continuous Dynamical Systems-Series B, 2023, 28(6): 3393-3413.@
[7]Hao Qu, Tianli Jiang, Jinliang Wang,Jiantao Zhao, Dynamical analysis of a diffusive malaria model with fixed latent period in the human and vector populations, International Journal of Biomathematics,2023, 16(1): 2250069.@
[8]Soufiane Bentout, Salih Djilali, Toshikazu Kuniya, Jinliang Wang, Mathematical analysis of a vaccination epidemic model with nonlocal diffusion, Mathematical Methods in the Applied Sciences,2023,46(9), 10970-10994 @
[9] Jinliang Wang, Ran Zhang, A note on the global dynamics for a diffusive foot-and-mouth disease model, Applied Mathematics Letters 145 (2023) 108737. @
[10] TianliJiang, JinliangWang, Modeling and analysis of a diffusive cholera model with seasonally forced intrinsic incubation period and bacterial hyperinfectivity, Journal of Mathematical Analysis and Applications, 527 (2023) 127414. @
[11] Jinliang Wang, Han Lu,Dynamics and profiles of a degenerated reaction–diffusion host-pathogen model with apparent and inapparent infection period, Communications in Nonlinear Science and Numerical Simulation, 125 (2023), 107318. @————————————————————————————————————————————
---2022---
[1] Ran Zhang, Jinliang Wang, On the global attractivity for a reaction-diffusion malaria model with incubation period in the vector population, Journal of Mathematical Biology (2022) 84:53 @
[2]Desheng Ji,Jinliang Wang,The asymptotic analysis of a vector-host epidemic model with finite growing domain, Zeitschrift fur angewandte Mathematik und Physik (2022) 73:112 @
[3]Wenjing Wu, Tianli Jiang, Weiwei Liu, Jinliang Wang, Threshold dynamics of a reaction-diffusion cholera model with seasonality and nonlocal delay, Communications on Pure and Applied Analysis, 2022, 21(10): 3263-3282.@
[4] Jinliang Wang, Wenjing Wu, Toshikazu Kuniya, Analysis of a degenerated reaction-diffusion cholera model with spatial heterogeneity and stabilized total humans, Mathematics and Computers in Simulation 198 (2022) 151-171 @
[5]Jinliang Wang, Xiaoqing Wu, Toshikazu Kuniya, Analysis of a diffusive HBV model with logistic proliferation and non-cytopathic antiviral mechanisms, Communications in Nonlinear Science and Numerical Simulation 106 (2022) 106110 @
[6]Chunyue Wang, Jinliang Wang, Ran Zhang, Global analysis on an age-space structured vaccination model with Neumann boundary condition, Mathematical Methods in the Applied Sciences, 2022;45: 1640-1667 @
[7]Yifei Pan, Siyao Zhu, Jinliang Wang, Asymptotic profiles of a diffusive SIRS epidemic model with standard incidence mechanism and a logistic source, Zeitschrift fur angewandte Mathematik und Physik (2022) 73:36 @
[8]Weiwei Liu,Jinliang Wang, Ran Zhang, Dynamics of an infection age-space structured cholera model with Neumann boundary condition, European Journal of Applied Mathematics, 33(3), 2022: 393-422 @
[9]Yutong Guo, Jinliang Wang, Desheng Ji, Asymptotic profiles of a diffusive SIS epidemic model with vector-mediated infection and logistic source, Zeitschrift fur angewandte Mathematik und Physik (2022) 73:255 @
[10]Chunyang Li, Xiu Dong, Jinliang Wang, Stability Analysis of an Age-Structured Viral Infection Model With Latency, Electronic Journal of Differential Equations, Vol. 2022 (2022), No. 16, pp. 1-26 @
[11]Yifei Pan, Siyao Zhu, JinliangWang, A note on a ZIKV epidemic model with spatial structure and vector-bias, AIMS Mathematics, 2022,7(2): 2255-2265.@————————————————————————————————————————————
---2021---
[1]Jinliang Wang, Jing Wang, Analysis of a Reaction-Diffusion Cholera Model with Distinct Dispersal Rates in the Human Population, Journal of Dynamics and Differential Equations (2021) 33:549-575 @
[2]Jinliang Wang, Renhao Cui, Analysis of a diffusive host-pathogen model with standard incidence and distinct dispersal rates, Advances in Nonlinear Analysis, 2021; 10: 922-951 @
[3]Weiwei Liu, Jinliang Wang, Yuming Chen, Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model, Discrete and Continuous Dynamical Systems-Series B, 2021, 26(9): 4867-4885 @
[4]Wei Yang, Jinliang Wang, Analysis of a diffusive cholera model incorporating latency and bacterial hyperinfectivity, Communications on Pure and Applied Analysis, 2021, 20(11): 3937-3957 @
[5]Jinliang Wang, Ran Zhang, Toshikazu Kuniya, A reaction-diffusion Susceptible-Vaccinated-Infected-Recovered model in a spatially heterogeneous environment with Dirichlet boundary condition, Mathematics and Computers in Simulation 190 (2021) 848-865 @
[6]Chunyue Wang and Jinliang Wang, Analysis of a malaria epidemic model with age structure and spatial diffusion, Zeitschrift fur angewandte Mathematik und Physik (2021) 72:74 @
[7]Ran Zhang, Jinliang Wang, Shengqiang Liu, Traveling Wave Solutions for a Class of Discrete Diffusive SIR Epidemic Model, Journal of Nonlinear Science (2021) 31:10 @
[8]Xiaoyan Yuan, Yijun Lou, Daihai He, Jinliang Wang, Daozhou Gao, A Zika Endemic Model for the Contribution of Multiple Transmission Routes, Bulletin of Mathematical Biology (2021) 83:111 @
[9]Feng Li, Yuanyuan Liu, PeiYu, Jinliang Wang, Complex integrability and linearizability of cubic Z2-equivariant systems with two 1:qresonant singular points, Journal of Differential Equations 300 (2021) 786-813 @————————————————————————————————————————————
E-mail: jinliangwang@hlju.edu.cn