
李睿兵,男,汉族,山东滨州人,1995年12月出生。2024年毕业于哈尔滨工程大学,获得工学博士学位。现为黑龙江大学数学科学学院副教授。目前主要在非线性系统、多智能体系统、自主水下航行器以及鲁棒控制等方面从事研究工作。主持哈尔滨工程大学博士创新基金项目1项。曾任中国自动化学会哈尔滨工程大学第一届学生分会候任主席。在IEEE Transactions on Cybernetics, IEEE Transactions on Neural Networks and Learning Systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems, Journal of the Franklin Institute, and Information Sciences等期刊发表学术论文10余篇。担任IEEE Transactions on Cybernetic,IEEE Transactions on Automation Science and Engineering,and IEEE/CAA Journal of Automatica Sinica等多个期刊及国际会议审稿人。————————————————————————————————————————————
一、教育经历
2014.09—2018.06 泰山学院,信息科学与技术学院,工学学士;
2018.09—2020.06 山东师范大学,信息科学与工程学院,工程硕士,导师:牛奔;
2020.09—2024.06 哈尔滨工程大学,智能科学与工程学院,工学博士,导师:冯志光。————————————————————————————————————————————
二、工作经历
2024.08—至今 黑龙江大学数学科学学院,副教授。————————————————————————————————————————————
三、研究方向
● 复杂系统理论与非线性控制。————————————————————————————————————————————
四、科研项目
● 基于状态转换函数的约束控制研究及应用,哈尔滨工程大学博士创新基金,项目编号:BKYC20230401,2023/6-2024/6,4万元,已结题,主持。————————————————————————————————————————————
五、代表性论文
[1] Zhiguang Feng, Ruibing Li*, Naifu Zhang, Ligang Wu. Event-based asymptotic tracking control for constrained MIMO nonlinear systems via a single-parameter adaptation method. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(12): 7758-7768.
[2] Zhiguang Feng, Ruibing Li*, Ligang Wu. Adaptive decentralized control for constrained strong interconnected nonlinear systems and its application to inverted pendulum. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(7): 10110-10120.
[3] Zhiguang Feng, Ruibing Li*, XingJian Jing. Neuroadaptive control for active suspension systems with time-varying motion constraints: A feasibility-condition-free method. IEEE Transactions on Cybernetics, 2024, 54(1): 287-297.
[4] Zhiguang Feng, Ruibing Li*, Weixing Zheng. Event-based adaptive neural network asymptotic tracking control for a class of nonlinear systems. Information Sciences, 2022, 612: 481-495.
[5] Zhiguang Feng, Ruibing Li*, Mohammed Chadli, Xun Zhang. Removing the feasibility conditions on adaptive fuzzy decentralized tracking control of large-scale nonlinear systems with full-state constraints. Journal of the Franklin Institute, 2022, 359(11): 5125-5147.
[6] Ruibing Li, Ben Niu, Zhiguang Feng, et al. Adaptive neural design frame for uncertain stochastic nonlinear non-lower triangular pure-feedback systems with input constraint. Journal of the Franklin Institute, 2019, 356(6): 9545-9564.
[7] Ruibing Li, Xiaomei Wang, Xiaomei Liu, et al. Adaptive neural tracking control for uncertain switched nonlinear non-lower triangular system with disturbances and dead-zone input. International Journal of Control, Automation and Systems, 2020, 18: 1445–1452.
[8] Jidong Liu, Ruibing Li*, Xiaomei Liu, et al. Intelligent adaptive tracking controller design for stochastic switched pure-feedback nonlinear systems with input saturation and non-lower triangular structure. IEEE Access, 2020, 8: 127022-127033.
[9] Zhiguang Feng, Huayang Zhang, Ruibing Li. State and static output feedback control of singular Takagi-Sugeno fuzzy systems with time-varying delay via proportional plus derivative feedback. Information Sciences, 2022, 608: 1334-1351, 2022.
[10] Ruibing Li, Zhiguang Feng, Yuning Cao, et al. Adaptive NN tracking control for stochastic pure-feedback nonlinear systems in non-strict-feedback form. In Proceedings of 2020 International Conference on Information, Cybernetics, and Computational Social Systems, 2020, pp. 124-129.————————————————————————————————————————————
Email: liruibing@hlju.edu.cn